Quantcast
Channel: roomba – Hackaday

Hackaday Links: March 7, 2021

$
0
0
Hackaday Links Column Banner

It’s March, which means Keysight is back in the business of giving away a ton of test gear. Keysight University Live starts on March 15, with daily events the first week followed by a string of weekly live events through April. We always enjoy these Keysight events; sure, they’re clearly intended to sell more gear, but the demos and tutorials are great, and we always learn a lot. There’s also a feeling of community that feels similar to the Hackaday community; just a bunch of electronics nerds getting together to learn and share. If you’re interested in that community, or even if you’re just looking for a chance to win something from the $300,000 pile of goodies, you’ll need to register.

There’s another event coming up that you’ll want to know about: the 2021 Open Hardware Summit. Because 2021 is the new 2020, the summit is being held virtually again, this year on April 9. Tickets are on sale now, and we’re told there are still plenty of Ada Lovelace Fellowships available to those who consider themselves to be a minority in tech. The Fellowship covers the full cost of a ticket; it usually covers travels costs too, but sadly we’re still not there yet.

Once we do start traveling again, you might need to plan more carefully if cities start following the lead of Petaluma, California and start banning the construction of gas stations. The city, about 40 miles (64 km) north of San Francisco, is believed to be the first city in the United States to ban new gas station construction. The city council’s decision also prevents gas station owners from expanding, reconstructing, or relocating existing gas stations. The idea is to create incentives to move toward non-fossil fuel stations, like electric vehicle charging stations and hydrogen fueling. Time will tell how well that works out.

Go home Roomba — you’re drunk. That could be what Roomba owners are saying after an update semi-bricked certain models of the robotic vacuum cleaners. Owners noted a variety of behaviors, like wandering around in circles, bumping into furniture, and inability to make its way back to base for charging. There’s even a timelapse on reddit of a Roomba flailing about pathetically in a suspiciously large and empty room. The drunken analogy only goes so far, though, since we haven’t seen any reports of a Roomba barfing up the contents of its dust bin. But we’re still holding out hope.

And finally, if you’re not exactly astronaut material but still covet a trip to space, you might luck out courtesy of Japanese billionaire Yusaku Maezawa. He’s offering to pay the way for eight people from around the world on a planned flight to the Moon and back in 2023. Apparently, Maezawa bought up all the seats for the flight back in 2018 with the intention of flying a group of artists to space. His thinking has changed, though, and now he’s opening up the chance to serve as ballast join the crew to pretty much any rando on the planet. Giving away rides on Starship might be a harder sell after this week’s test, but we’re sure he’ll find plenty of takers. And to be honest, we wish the effort well — the age of routine civilian space travel can’t come soon enough for us.


Roomba Gets Alexa Support with an ESP8266 Stowaway

$
0
0

The modern home is filled with plenty of “smart” devices, but unfortunately, they don’t always speak the same language. The coffee maker and the TV might both be able to talk to your phone through their respective apps, but that doesn’t necessarily mean the two appliances can work together to better coordinate your morning routine. Which is a shame, since if more of these devices could communicate with each other, we’d be a lot closer to living that Jetsons life we were promised.

Luckily, as hardware hackers we can help get our devices better acquainted with one another. A recent post by [MyHomeThings] shows how the ESP8266 can bridge the gap between a Roomba and Amazon’s Alexa assistant. This not only allows you to cheaply and easily add voice control to the robotic vacuum, but makes it compatible with the Amazon’s popular home automation framework. This makes it possible to chain devices together into complex conditional routines, such as turning off the lights and activating the vacuum at a certain time each night.

The hack depends on the so-called Roomba Open Interface, a seven pin Mini-DIN connector that can be accessed by partially disassembling the bot. This connector provides power from the Roomba’s onboard batteries as well as a two-way serial communications bus to the controller.

By connecting a MP1584EN DC-DC converter and ESP8266 to this connector, it’s possible to send commands directly to the hardware. Add a little glue code to combine this capability with a library that emulates a Belkin Wemo device, and now Alexa is able to stop and start the robot at will.

We’ve seen this sort of trick used a few times before to add backdoor Alexa support to various gadgets, and it’s always interesting to see what kind of unusual hardware folks are looking to make an integral part of their smart home.

Hackaday Links: January 30, 2022

$
0
0
Hackaday Links Column Banner

After all the fuss and bother along the way, it seems a bit anticlimactic now that the James Webb Space Telescope has arrived at its forever home orbiting around L2. The observatory finished its trip on schedule, arriving on January 24 in its fully deployed state, after a one-month journey and a couple of hundred single-point failure deployments. The next phase of the mission is commissioning, and is a somewhat more sedate and far less perilous process of tweaking and trimming the optical systems, and getting the telescope and its sensors down to operating temperature. The commissioning phase will take five or six months, so don’t count on any new desktop photos until summer at the earliest. Until then, enjoy the video below which answers some of the questions we had about what Webb can actually see — here’s hoping there’s not much interesting to see approximately in the plane of the ecliptic.

In other solar system news, it turns out that one of the minor moons of Saturn may be more than meets the eye. Data captured by the Cassini mission flyby of Mimas shows the 400-km diameter moon probably has an internal ocean of liquid water. Astronomers have known about Mimas since William Herschel discovered it in 1789, and had assumed it was a giant ball of ice. But if it does turn out to have an internal ocean, it suddenly becomes another place to look for extraterrestrial life. But there’s just something familiar about the way this small moon looks that we just can’t put our finger on. Eh — probably nothing to worry about.

We got tipped off through The Analog to a fascinating video by Joe Grand detailing how he hacked a hardware wallet containing about $2 million of cryptocurrency. It’s a great case study in the art and science of fault injection, which was the approach Joe took to getting at the forgotten password for the Trezor hardware wallet. There are plenty of lessons here, both from the user side (don’t forget your password) and from the hacking side (patience is a virtue). Did he succeed, or did he end up frying the wallet? Watch and learn.

From the “It’s all fun and games until a multi-billionaire is slightly inconvenienced” files, we see that Elon Musk doesn’t like the fact that the comings and goings of his private jet are easily seen. This is thanks to a Twitter bot called @ElonJet, one of 15 similar billionaire-trackers written by 19-year-old Jack Sweeney. The bot scrapes ADSB data and correlates it with anonymized flight-plan data, and with a little logic applied to altitude data, figures out when and when Elon’s plane takes off and lands. Elon apparently Tweeted his objections to the tracker directly to Jack, saying that he didn’t want to become a target for “nutcases.” And then the world’s richest man made his takedown offer — $5,000. Jack is wisely holding out for at least another order of magnitude, or a Model 3 — whichever comes first. Don’t hold your breath, Jack.

Hams have a long history of using whatever is on hand to get on the air, but reusing COVID-19 rapid tests as antenna insulators may be pushing things a bit. Sure, the world is awash in plastic waste, and the used lateral-flow tests are just about the right size and shape for the job, but we’d say something soaked in saliva should probably be safely disposed of rather than reused.

And finally, when you stay in a hotel where a Hackaday editor has previously lodged, you’ve got to expect this kind of thing to happen. Jenny List shared this story from the Travelodge in Cambridge, where she stayed for the London Unconference in 2017, “in the before times” as she put it. According to reports, a robotic vacuum cleaner ran amok and made an escape from the hotel, having somehow failed to notice the flooring transition at the entrance that usually thwarts it. Now, we concede that it’s been more than four years since she stayed there, but it’s at least reasonable to ask if there’s a connection between Jenny’s visit and this obvious exploit of hardware hackery. We’re not throwing stones here, but the dead giveaway is that the hotel’s assistant manager offered “a drink at the bar” for the safe return of the robot. Sounds like Jenny might have been going for the long con here.

Doomba: Purifying Your Floors With Fire

$
0
0
A circular wheeled robot sits on a white background. There is a green tank of butane/propane in the center surrounded by wires and electronics.

If you’ve ever thought that your floor cleaning robot eating the fringe on your rug wasn’t destructive enough, [Kyle Brinkerhoff] is working on a solution — Doomba.

This blazingly fast RC vehicle has a tank of butane/propane gas nestled snugly amid its electronics and drive system to fuel a (not yet implemented) flamethrower. Watching how quickly this little bot can move in the video below certainly made our hearts race with anticipation for the inevitable fireworks glory of completed build. Dual motors and a tank-style drive ensure that this firebug will be able to maneuver around any obstacle.

As of writing, the flamethrower and an updated carriage for the drivetrain are underway. Apparently, spinning very quickly in circles can be just as disorienting for robots as it is for us biological beings. During the test shown below, the robot kicked out one of its drive motors. [Kyle] says the final touch will be putting the whole assembly inside an actual Roomba shell for that authentic look.

With spooky season upon us, it’s always good to have the cleansing power of fire at hand in case you find more than you bargained for with your Ghost-Hunting PKE Meter. While there’s no indication whether Doomba can actually run DOOM, you might be interested in this other Doomba Project that uses Roomba’s maps of your house to generate levels for the iconic shooter.

Trying to Build The World’s Fastest Roomba

$
0
0

A lot of people complain that Roombas are unreliable, poor at their job, or just plain annoying. Few people complain they’re not fast enough in a straight line. Regardless, [electrosync] set about building the world’s fastest Roomba for his own personal satisfaction.

For this challenge, [electrosync] set his own rules. The build must look like a Roomba, use two drive wheels, and one motor per wheel. It also has to maintain its vacuum functionality. After stripping down a used Roomba, he set about carving out space in the chassis for upgraded hardware. Brushed DC 775 motors were selected for the drivetrain, and these run through a 3:1 planetary reduction gearbox. 3D-printed mounts were then used to install the new motors in the existing chassis. New 3D-printed wheels completed the drivetrain. The original Ni-MH cells were replaced with a pair of 3-cell lithium polymer batteries for more power.

Measured with a Bluetooth GPS device, the upgraded Roomba achieved an impressive 36 km/h (22 MPH). With new wheel designs clad in urethane rubber and an improved anti-wheelie device, it hit a mighty 49 km/h (30 MPH). Adding 4-cell batteries pushed things further to 57 km/h (35 MPH), but the Roomba became difficult to control.

The gauntlet has been thrown down. Do you think you can build a faster Roomba? Time to get hacking! Video after the break.

Seriously, Don’t Buy This Mopping Robot

$
0
0

The original Roomba robotic vacuum cleaner led to loads of clones and lookalikes over the years, and one of them is the ALEE mopping “robot”. [Raymond] tears it down and reveals what’s inside. Turns out it contains mostly regret! Although it does host some design cleverness in its own way.

Technically the ALEE, which cost [Raymond] a cool $85 USD, is not a robot since it has no sensors. And unless a dragging a wet cloth pad kept moist by a crude drip reservoir counts as “mopping”, it’s not much of a mop, either.

This one-motor unit (and tiny battery) is responsible for both motion and direction control. There are no sensors.

There is one interesting aspect to this thing, and it’s to do with the drive system and direction control. The whole thing is driven by a single motor, and not a very powerful one. The center of the robot has a pair of wheels that are both driven at the same rate and speed, and the wheel assembly can pivot around its axis. That’s about it. There are not even any bump sensors of any kind.

So how does this thing move, let alone change direction to (poorly) emulate an original Roomba-like crisscross pattern? The control board appears to have one job: if the motor stalls, reverse direction. That, combined with the fact that the drive unit can pivot and the enclosure is dragging a wet rag, appears to be all the chaos that’s needed to turn bonking into a wall into an undefined direction change.

It’s not great performance, but it sure is some impressive cost-cutting. You can see it bonk around unimpressively in a short video, embedded below the page break.

Just to be clear, [Raymond] knows perfectly well what he’s in for when he obtains cheap tech items from overseas retailers for teardowns. The ALEE does have some mildly interesting secrets to share, but overall, it really wasn’t worth it. Sometimes cheap tech has hacker potential, but there’s no such potential here. Seriously, don’t buy this thing.

Old Robotic Vacuum Gets a New RC Lease on Life

$
0
0

To our way of thinking, the whole purpose behind robotic vacuum cleaners is their autonomy. They’re not particularly good at vacuuming, but they are persistent about it, and eventually get the job done with as little human intervention as possible. So why in the world would you want to convert a robotic vacuum to radio control?

For [Lucas], the answer was simple: it was a $20 yard sale find, so why not? Plus, he’s got some secret evil plan to repurpose the suckbot for autonomous room mapping, which sounds like a cool project that would benefit from a thorough knowledge of this little fellow’s anatomy and physiology. The bot in question is a Hoover Quest. Like [Lucas] we didn’t know that Hoover made robotic vacuums (Narrator: they probably don’t) but despite generally negative online reviews by users, he found it to be a sturdily built and very modular and repairable unit.

After an initial valiant attempt at reverse engineering the bot’s main board — a project we encourage [Lucas] to return to eventually — he settled for just characterizing the bot’s motors and sensors and building his own controller. The Raspberry Pi Zero he chose may seem like overkill, but he already had it set up to talk to a PS4 game controller, so it made sense — right up until he released the Magic Smoke within it. A backup Pi took the sting out of that, and as the brief video below shows, he was finally able to get the bot under his command.

[Lucas] has more plans for his new little buddy, including integrating the original sensors and adding new ones. Given its intended mission, we’d say a lidar sensor would be a good addition, but that’s just a guess. Whatever he’s got in store for this, we’re keen to hear what happens.





Latest Images